By Topic

Artificial neural networks in the solution of inverse electromagnetic field problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hoole, S.R.H. ; Harvey Mudd Coll., Claremont, CA, USA

The use of artificial neural networks in the solution of inverse electromagnetic field problems is investigated. It is shown that artificial neural networks, while being no panacea, have a role to play in a limited domain of applications-that is, while it is ineffective to train networks to cover a broad class of devices, it is indeed possible to develop well-trained networks that function effectively over a narrow range of performance of a particular class of device. Particularly if one knows the desired geometry approximately and uses training sets around this geometry, simple neural networks with a few training sets can be used to do an effective job. However, neural networks cannot be used efficiently without such prior knowledge

Published in:

Magnetics, IEEE Transactions on  (Volume:29 ,  Issue: 2 )