By Topic

A multistage system to detect epileptiform activity in the EEG

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. A. Dingle ; Christchurch Hospital, New Zealand ; R. D. Jones ; G. J. Carroll ; W. R. Fright

A PC-based system has been developed to automatically detect epileptiform activity in 16-channel bipolar EEGs. The system consists of 3 stages: data collection, feature extraction, and event detection. The feature extractor employs a mimetic approach to detect candidate epileptiform transients on individual channels, while an expert system is used to detect focal and nonfocal multichannel epileptiform events. Considerable use of spatial and temporal contextual information present in the EEG aids both in the detection of epileptiform events and in the rejection of artifacts and background activity as events. Classification of events as definite or probable overcomes, to some extent, the problem of maintaining high detection rates while eliminating false detections. So far, the system has only been evaluated on development data but, although this does not provide a true measure of performance, the results are nevertheless impressive. Data from 11 patients, totaling 180 minutes of 16-channel bipolar EEGs, have been analyzed. A total of 45-71% (average 58%) of epileptiform events reported by the human expert in any EEG were detected as definite with no false detections (i.e., 100% selectivity) and 60-100% (average 80%) as either definite or probable but at the expense of up to 9 false detections per hour. Importantly, the highest detection rates were achieved on EEGs containing little epileptiform activity and no false detections were made on normal EEGs.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:40 ,  Issue: 12 )