Cart (Loading....) | Create Account
Close category search window
 

The characteristics of CMOS devices in oxygen-implanted silicon-on-insulator structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mao, B.-Y. ; Texas Instrum. Inc., Dallas, TX, USA ; Sundaresan, R. ; Chen, C.-E.D. ; Matloubain, M.
more authors

The characteristics of CMOS devices fabricated in oxygen-implanted silicon-on-insulator (SOI) substrates with different oxygen doses are studied. The results show that transistor junction leakage currents are improved by orders of magnitude when the oxygen dose is decreased from 2.25×1018 cm-2 to 1.4×1018 cm-2 . The floating-body effect, i.e. transistor turn-on at lower gate voltage with dramatic improvement in subthreshold slope when the drain voltage is increased, is enhanced by the reduction in leakage current and hence the oxygen dose. In SOI substrates implanted with 1.4×1017 cm-2 oxygen dose and annealed at 1150°C, back-channel mobilities are decreased by several orders of magnitude compared to the mobilities in the precipitate-free silicon film. These device characteristics are correlated with the microstructure at the silicon-buried-oxide interface, which is controlled by oxygen implantation and post-oxygen-implantation anneal

Published in:

Electron Devices, IEEE Transactions on  (Volume:35 ,  Issue: 5 )

Date of Publication:

May 1988

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.