By Topic

Circuit activity based logic synthesis for low power reliable operations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roy, K. ; Texas Instrum. Inc., Dallas, TX, USA ; Prasad, S.C.

A system developed to synthesize both finite state machines and combinational logic for low-power applications, called SYCLOP, is described. SYCLOP tries to minimize the transition density at the internal nodes of a circuit to minimize power dissipation during normal operation. As input signal probabilities and transition densities are considered during the synthesis process, a particular circuit can be synthesized in different ways for different applications that require different types of inputs. For the present state inputs to the combinational circuit of a state machine, simulation was used to determine the signal probabilities and transition densities. The algorithm is not limited by the number of bits used for state assignment. The multilevel optimization process extracts kernels so that there is a balance between area and power optimization. Results have been obtained for a wide range of MCNC benchmark examples.<>

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:1 ,  Issue: 4 )