By Topic

Inductive learning in deductive databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dzeroski, S. ; Jozef Stefan Inst., Ljubljana Univ., Slovenia ; Lavrac, N.

Most current applications of inductive learning in databases take place in the context of a single extensional relation. The authors place inductive learning in the context of a set of relations defined either extensionally or intentionally in the framework of deductive databases. LINUS, an inductive logic programming system that induces virtual relations from example positive and negative tuples and already defined relations in a deductive database, is presented. Based on the idea of transforming the problem of learning relations to attribute-value form, several attribute-value learning systems are incorporated. As the latter handle noisy data successfully, LINUS is able to learn relations from real-life noisy databases. The use of LINUS for learning virtual relations is illustrated, and a study of its performance on noisy data is presented

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:5 ,  Issue: 6 )