Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Optical coherence domain reflectometry by synthesis of coherence function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hotate, K. ; Res. Center for Adv. Sci. & Technol., Tokyo Univ., Japan ; Kamatani, O.

Reflectometry by synthesis of optical coherence function using a laser diode as a light source for high resolution measurements of optical systems and waveguide devices is proposed. This method has no mechanical moving parts. The oscillation frequency of the laser diode is controlled by the injection current with an appropriate waveform and the coherence function, which corresponds to the time-averaged spectrum shape, is synthesized. The principle that includes three types of synthesized coherence function is presented. The basic experiments of the three methods have been successfully carried out and the resolution about 10 mm in air is demonstrated using an ordinary Fabry-Perot-type single-mode laser diode. The performance deterioration factors of the most promising method are also discussed, in which a coherence function with a delta-function-like shape along the optical path is synthesized to obtain the reflectivity distribution directly

Published in:

Lightwave Technology, Journal of  (Volume:11 ,  Issue: 10 )