By Topic

Residence time of metal ions generated from microsecond vacuum arcs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Tsuruta ; Dept. of Electr. & Electron. Eng., Ibaraki Univ., Japan ; N. Yamazaki

Vacuum gaps of 1 mm with lead or copper cathode are fired by a 13 μs duration sinusoidal arc or a 10 μs duration exponentially-decaying arc, and time-of-flight (TOF) ion measurements are made at variable times after the arc ignition. At the lead cathode, Pb+ and Pb++ ions are generated and the upper limit on the times for Pb+ ion detection are 48 μs and 46 μs from the arc ignition for the sinusoidal and exponential arcs, respectively. At the copper cathode, Cu+, Cu++, and Cu+++ ions are generated and detected within 15 μs and 13 μs from the arc ignition for the sinusoidal and exponential arcs, respectively. The residence time of the Pb+ ions in the ion acceleration region is approximately 35 μs, regardless of the waveform of the arc current. The residence time of the copper ions, described by the time constant of the time-of-flight ion current delay characteristics, is 3 μs

Published in:

IEEE Transactions on Plasma Science  (Volume:21 ,  Issue: 5 )