By Topic

Optimal apportionment of reliability and redundancy in series systems under multiple objectives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dhingra, A.K. ; Dept. of Mech. Eng., Wisconsin Univ., Milwaukee, WI, USA

A multiobjective reliability apportionment problem for a series system with time-dependent reliability is presented. The resulting mathematical programming formulation determines the optimal level of component reliability and the number of redundant components at each stage. The problem is a multiobjective, nonlinear, mixed-integer mathematical programming problem, subject to several design constraints. Sequential unconstrained minimization techniques in conjunction with heuristic algorithms are used to find an optimum solution. A generalization of the problem in view of inherent vagueness in the objective and the constraint functions results in an ill-structured reliability apportionment problem. This multiobjective fuzzy optimization problem is solved using nonlinear programming. The computational procedure is illustrated through a numerical example. The fuzzy optimization techniques can be useful during initial stages of the conceptual design of engineering systems where the design goals and design constraints have not been clearly identified or stated, and for decision making problems in ill-structured situations

Published in:

Reliability, IEEE Transactions on  (Volume:41 ,  Issue: 4 )