By Topic

Analysis of the transistor-related noise in integrated p-i-n-HBT optical receiver front-ends

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, Q.Z. ; Dept. of Electr. Eng., British Columbia Univ., Vancouver, BC, Canada ; Pulfrey, D.L. ; Jackson, M.K.

The equivalent-input-noise-current spectral density for a monolithically integrated optical receiver front-end using InP/InGaAs heterojunction bipolar transistors and a p-i-n photodiode is computed from a small-signal model. Particular attention is paid to the contributions to the noise from the HBT in the first stage of the amplifier. It is shown that with transistors designed for 1-10-Gb/s receivers the base current shot noise dominates in the frequency range from 10 MHz to 1 GHz, and both the base resistance thermal noise and the collector current shot noise are important at higher frequencies. Device features which determine the extent of these noise sources are identified, and ways to improve the noise performance are discussed

Published in:

Electron Devices, IEEE Transactions on  (Volume:40 ,  Issue: 12 )