By Topic

Detection and location of internal defects in the insulation of power transformers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. Fuhr ; ABB Corp. Res., Baden-Daettwil, Switzerland ; M. Haessig ; P. Boss ; D. Tschudi
more authors

With the development of fast, and low-cost analog-digital converters (ADCs) and new mathematical procedures for waveform description, e.g., time encoded signal processing and recognition (TESPAR), novel approaches to detect and locate internal defects in the insulation of power transformers become feasible if the following requirements are fulfilled: the equivalent circuit of the insulating system, suitable for the fast partial discharge (PD) signals with risetimes of ~10 ns, is known; the response of the insulating system to PD signals injected at least at three different sites of each winding (top, center, bottom) is calculated, or measured at the signal tap-off points (i.e., bushings); and the pattern matrix of all calculated or measured signals exists: e.g., encoded and signal processes with TESPAR as a reference. The above mentioned requirements are examined for quasi-simultaneous detection and location of internal defects in power transformers. The method is applied to PD measurements on power transformers

Published in:

IEEE Transactions on Electrical Insulation  (Volume:28 ,  Issue: 6 )