By Topic

On the character of different forms of partial discharge and their related terminologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bartnikas, R. ; Inst. de Recherche d''Hydro-Quebec, Varennes, Que., Canada ; Novak, J.P.

Experimentally obtained partial discharge pulse forms are compared with those derived theoretically, using a mathematical model of a short gap. The calculations indicate that, with overvolted short gaps, the apparent absence of the protracted ion current tail in the overall pulse form is due to the large excess of the electron current component generated by strongly enhanced cathode emission by the photoeffect and other phenomena. Under conditions of high overvoltage the ion-impact-induced emission, the ion fluxes and, consequently, the ion current component are greatly reduced as compared to the electron current. The long ion current tail, representing not more than a few percent of the total current, passes undetected. Pulseless and pseudo-glow discharges are considered. Preferred terms to designate the different forms of partial discharges are suggested

Published in:

Electrical Insulation, IEEE Transactions on  (Volume:28 ,  Issue: 6 )