Cart (Loading....) | Create Account
Close category search window
 

Rate-monotonic analysis for real-time industrial computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Klein, M.H. ; Carnegie Mellon Univ., Pittsburgh, PA, USA ; Lehoczky, J.P. ; Rajkumar, R.

Issues of real-time resource management are pervasive throughout industrial computing. The underlying physical processes of many industrial computing applications impose explicit timing requirements on the tasks processed by the computer system. These timing requirements are an integral part of the correctness and safety of a real-time system. It is tempting to think that speed (for example, processor speeds or higher communication bandwidths) is the sole ingredient in meeting system timing requirements, but speed alone is not enough. Proper resource-management techniques also must be used to prevent, for example, situations in which long, low priority tasks block higher priority tasks with short deadlines. One guiding principle in real-time system resource management is predictability, the ability to determine for a given set of tasks whether the system will be able to meet all of the timing requirements of those tasks. Predictability calls for the development of scheduling models and analytic techniques to determine whether or not a real-time system can meet its timing requirements. The author illustrates an analysis methodology, rate monotonic analysis, for managing real-time requirements in a distributed industrial computing situation. The illustration is based on a comprehensive robotics example drawn from a typical industrial application.<>

Published in:

Computer  (Volume:27 ,  Issue: 1 )

Date of Publication:

Jan. 1994

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.