By Topic

Improvement in norm-reducing Newton methods for circuit simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. R. Yeager ; Electron. Lab., Stanford Univ., CA, USA ; R. W. Dutton

The general convergence problems encountered when applying Newton's method to the circuit simulation domain are discussed. The authors identify and explore one source of difficulties for these methods and discuss a solution. The basic transconductance element, widely used to construct FET and bipolar transistor models, results in a pathological failure case for L2-based norm-reducing methods due to the unidirectional nature between its input and output mode. Their particular solution retains the generic nature of norm-reducing methods but replaces the L2-norm with a nonconsistent point of view. This norm determines which equations should converge first, prioritizes them, and guides the damping of the Newton updates accordingly. From a mathematical point of view, the steepest-descent direction in the Nu-norm is parallel to each Newton update at the iterate point and, therefore, allows more effective damping of the updates. The result has been an order-of-magnitude reduction in the number of Newton iterations. The performance of this norm on a series of high-electron-mobility transistor (HEMT) circuits is presented. The nonconsistency of the Nu-norm and its impact on global convergence properties for norm-reducing methods are discussed

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:8 ,  Issue: 5 )