By Topic

Automatic contour definition on left ventriculograms by image evidence and a multiple template-based model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lilly, P. ; Eastman Kodak Co., Rochester, NY, USA ; Jenkins, J. ; Bourdillon, P.

An algorithm which utilizes digital image processing and pattern recognition methods for automated definition of left ventricular (LV) contours is presented. Digital image processing and pattern recognition techniques are applied to digitally acquired radiographic images of the heart to extract the LV contours required for quantitative analysis of cardiac function. Knowledge of the image domain is invoked at each step of the algorithm to orient the data search and thereby the complexity of the solution. A knowledge-based image transformation, directional gradient search, expectations of object versus background location, least-cost path searches by dynamic programming, and a digital representation of possible versus impossible ventricular shape are exploited. The digital representation, composed of a set of characteristic templates, was created using contours obtained by manual tracing. The algorithm was tested by application of three sets of 25 images each. Test set one and two were used as training sets for creation of the model for contour correction. Model-based correction proved to be an effective technique, producing significant reduction of error in the final contours

Published in:

Medical Imaging, IEEE Transactions on  (Volume:8 ,  Issue: 2 )