By Topic

Effect of laser phase noise in Sagnac interferometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Krakenes ; Dept. of Electr. Eng. & Comput. Sci., Norwegian Inst. of Technol., Trondheim, Norway ; K. Blotekjaer

A theoretical analysis of the responsivity and the noise caused by backscattering in a Sagnac interferometer used as a sensor for reciprocal measurands, such as acoustic waves, is presented. Both Rayleigh backscattering and reflections from splices are taken into account. The noise power is found to increase proportionally to the source coherence time, and a noise equivalent phase shift in the range of 0.1×10-6 rad r.m.s./Hz1/2 is predicted for typical fibers and diode lasers. Experimentally, a noise equivalent phase shift of 2.5×10-7 rad r.m.s./Hz1/2 at 10 kHz was observed, with a detector current of 3 μA

Published in:

Journal of Lightwave Technology  (Volume:11 ,  Issue: 4 )