By Topic

Learning to control an inverted pendulum using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Anderson, Charles W. ; GTE Lab. Inc., Waltham, MA, USA

An inverted pendulum is simulated as a control task with the goal of learning to balance the pendulum with no a priori knowledge of the dynamics. In contrast to other applications of neural networks to the inverted pendulum task, performance feedback is assumed to be unavailable on each step, appearing only as a failure signal when the pendulum falls or reaches the bounds of a horizontal track. To solve this task, the controller must deal with issues of delayed performance evaluation, learning under uncertainty, and the learning of nonlinear functions. Reinforcement and temporal-difference learning methods are presented that deal with these issues to avoid unstable conditions and balance the pendulum.<>

Published in:

Control Systems Magazine, IEEE  (Volume:9 ,  Issue: 3 )