By Topic

Optimal estimation of contour properties by cross-validated regularization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shahraray, B. ; AT&T Bell Lab., Holmdel, NJ, USA ; Anderson, D.J.

The problem of estimating the properties of smooth, continuous contours from discrete, noisy samples is used as vehicle to demonstrate the robustness of cross-validated regularization applied to a vision problem. A method for estimation of contour properties based on smoothing spline approximations is presented. Generalized cross-validation is to devise an automatic algorithm for finding the optimal value of the smoothing (regularization) parameter from the data. The cross-validated smoothing splines are then used to obtain optimal estimates of the derivatives of quantized contours. Experimental results are presented which demonstrate the robustness of the method applied to the estimation of curvature of quantized contours under variable scale, rotation, and partial occlusion. These results suggest the application of generalized cross-validation to other computer-vision algorithms involving regularization

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:11 ,  Issue: 6 )