By Topic

An improved solution for integrated array optics in quasi-optical mm and submm receivers: the hybrid antenna

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Buttgenbach, T.H. ; Div. of Phys. Math. & Astron., California Inst. of Technol., Pasadena, CA, USA

A dielectric lens antenna that is a special case of an extended hemispherical dielectric lens and is operated in the diffraction-limited regime is considered. The dielectric lens antenna is fed by a planar antenna that is mounted on the flat side of the dielectric lens antenna, using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of the extension of the hemispherical lens and of lens size. An optimum extension distance for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved is found experimentally and numerically. At 115 GHz the aperture efficiency was measured to be (76±6)% for a diffraction-limited beam with sidelobes below -17 dB. Results for a single hybrid antenna with an integrated superconductor-insulator-superconductor (SIS) detector and a broadband matching structure at submillimeter wavelengths are presented. The hybrid antenna is space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:41 ,  Issue: 10 )