By Topic

A maximum likelihood framework for determining moving edges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bouthemy, P. ; IRISA/INRIA, Rennes, France

The determination of moving edges in an image sequence is discussed. An approach is proposed that relies on modeling principles and likely hypothesis testing techniques. A spatiotemporal edge in an image sequence is modeled as a surface patch in a 3-D spatiotemporal space. A likelihood ratio test enables its detection as well as simultaneous estimation of its related attributes. It is shown that the computation of this test leads to convolving the image sequence with a set of predetermined masks. The emphasis is on a restricted but widely relevant and useful case of surface patch, namely the planar one. In addition, an implementation of the procedure whose computation cost is merely equivalent to a spatial gradient operator is presented. This method can be of interest for motion-analysis schemes, not only for supplying spatiotemporal segmentation, but also for extracting local motion information. Moreover, it can cope with occlusion contours and important displacement magnitude. Experiments have been carried out with both synthetic and real images

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:11 ,  Issue: 5 )