By Topic

Sensory nerve recording for closed-loop control to restore motor functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Popovic, D.B. ; Div. of Neurosci., Alberta Univ., Edmonton, Alta., Canada ; Stein, R.B. ; Jovanovic, K.L. ; Dai, R.
more authors

A method is developed for using neural recordings to control functional electrical stimulation (FES) to nerves and muscles. Experiments were done in chronic cats with a goal of designing a rule-based controller to generate rhythmic movements of the ankle joint during treadmill locomotion. Neural signals from the tibial and superficial peroneal nerves were recorded with cuff electrodes and processed simultaneously with muscular signals from ankle flexors and extensors in the cat's hind limb. Cuff electrodes are an effective method for long-term chronic recording in peripheral nerves without causing discomfort or damage to the nerve. For real-time operation the authors designed a low-noise amplifier with a blanking circuit to minimize stimulation artifacts. They used threshold detection to design a simple rule-based control and compared its output to the pattern determined using adaptive neural networks. Both the threshold detection and adaptive networks are robust enough to accommodate the variability in neural recordings. The adaptive logic network used for this study is effective in mapping transfer functions and therefore applicable for determination of gait invariants to be used for closed loop control in an FES system. Simple rule-bases will probably be chosen for initial applications to human patients. However, more complex FES applications require more complex rule-bases and better mapping of continuous neural recordings and muscular activity. Adaptive neural networks have promise for these more complex applications.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:40 ,  Issue: 10 )