By Topic

Fatigue compensation of the electromyographic signal for prosthetic control and force estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. Park ; Dept. of Anesthesiology, Bioengineering Lab., Salt Lake City, UT, USA ; S. G. Meek

During a sustained muscle contraction, the amplitude of electromyographic (EMG) signals increases and the spectrum of the EMG signal shifts toward lower frequencies. These effects are due to muscular fatigue and can cause problems in the control of myoelectric prostheses and in the estimation of contraction level from the EMG signal. It has been well known that the fatigue effects can be explained by the conduction velocity changes during the fatigue process and by the idea that the conduction velocity is linearly proportional to the median frequency of EMG signals. Hence the fatigue process can be monitored by measuring the median frequency. A fatigue compensation preprocessor has been developed. It uses the widely accepted power spectrum density model of EMG signals that contains the conduction velocity as a measure of fatigue. It was verified that the preprocessor scales down the amplitude of the fatigued EMG signal and decompresses the spectrum. Hence, the preprocessor eliminates the increase in amplitude and the shift in frequency and enables consistent EMG signals to be used to control prostheses.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:40 ,  Issue: 10 )