By Topic

Stability and control of a frontal four-link biped system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Iqbal, K. ; Pakistan Air Force Acad., Coll. of Avionics Eng., Risalpur, Pakistan ; Hemami, H. ; Simon, S.

A conceptual model, for studying the involvement of the central nervous system (CNS) in the performance of lateral swaying movements is described. The model is based on a four-link planar biped that approximates gross human locomotion in the frontal plane. The viscoelastic function of the musculoskeletal system provides a linear controller for the system. Such an intrinsic controller can effectively duplicate simple well-learned tasks in the absence of higher level CNS feedback. This hypothesis is supported by comparing the proposed controller with two neurophysiologically involved linear decoupling schemes. Reference trajectories for swaying commands are recorded from experiments conducted in the Gait Analysis Laboratory of the Ohio State University Hospitals. These reference trajectories are inputs to all three controllers. The viability of intrinsic feedback scheme in the execution of swaying tasks is demonstrated via comparison of responses from the three controllers.<>

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:40 ,  Issue: 10 )