By Topic

Radio propagation characteristics for line-of-sight microcellular and personal communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xia, H. ; Telesis Technol. Lab., Walnut Creek, CA, USA ; Bertoni, Henry L. ; Maciel, L.R. ; Lindsay-Stewart, A.
more authors

To acquire a knowledge of radio propagation characteristics in the microcellular environments for personal communications services (PCS), a comprehensive measurement program was conducted by Telesis Technologies Laboratory (TTL) in the San Francisco Bay area using three base station antenna heights of 3.2 m, 8.7 m, and 13.4 m and two frequencies at 900 MHz and 1900 MHz. Five test settings were chosen in urban, suburban, and rural areas in order to study propagation in a variety of environments. This paper reports the LOS measurements in different environments, all of which show variations of signal strength with distance that have distinct near and far regions separated by a break point. It was also found that the location of the break point for different frequencies and antenna heights can be calculated based on first Fresnel zone clearance. The regression analysis reveals a slope that is less than two before the break point, while it is greater than two after the break point. This break distance can be used to define the size of microcell and to design for fast hand-off. Beyond the first Fresnel zone break distance the base station antenna height gain was observed to approximately follow the square power law of antenna height

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:41 ,  Issue: 10 )