By Topic

Frequency-stabilized mode-locked solid-state laser system for precision range-Doppler imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Simpson, T.B. ; JAYCOR, San Diego, CA, USA ; Day, T. ; Doft, F. ; Malley, M.M.
more authors

We report measurements which show that an actively stabilized cw mode-locked Nd:YLF laser, in combination with a flashlamp-pumped Nd:glass amplifier, can achieve better than 1 cm resolution of distant rotating targets using range-Doppler imaging. To do this, we have produced trains of 50 ps mode-locked pulses with less than 25 kHz peak-to-peak optical frequency broadening and jitter of the laser modes. This frequency stability is achieved by active control of the oscillator cavity length using an external cavity as a reference. Cavity length stabilization can also reduce mode-locked laser timing jitter if the jitter is caused by cavity optical path length changes common to all laser modes. In our laser, however, the active optical-frequency-stabilization did not significantly improve laser pulse timing stability from the approximate 2-ps jitter levels achieved in our passively stabilized cavity. Analysis of the data indicates that a significant fraction of the timing jitter was due to laser cavity path length changes that varied from mode to mode

Published in:

Quantum Electronics, IEEE Journal of  (Volume:29 ,  Issue: 9 )