By Topic

Experience with Charlotte: simplicity and function in a distributed operating system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Finkel, R.A. ; Dept. of Comput. Sci., Kentucky Univ., Lexington, KY, USA ; Scott, M.L. ; Artsy, Y. ; Chang, H.-Y.

A retrospective view is presented of the Charlotte distributed operating system, a testbed for developing techniques and tools to solve computation-intensive problems with large-grain parallelism. The final version of Charlotte runs on the Crystal multicomputer, a collection of VAX-11/750 computers connected by a local area network. The kernel/process interface is unique in its support for symmetric, bidirectional communication paths (called links), and synchronous nonblocking communications. Several lessons were learned in implementing Charlotte. Links have proven to be a useful abstraction, but the primitives do not seem to be at quite the right level of abstraction. The implementation uses finite-state machines and a multitask kernel, both of which work well. It also maintains absolute distributed information which is more expensive that using hints. The development of high-level tools, particularly the Lynx distributed programming language, has simplified the use of kernal primitives and helps to manage concurrency at the process level

Published in:

Software Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 6 )