Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

The role of dust particles with large gyroradii in the `2/3' fall-down process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Azar, M.J. ; Dept. of Phys., California Univ., San Diego, La Jolla, CA, USA ; Thompson, W.B.

The authors consider the Alfven-Arrhenius fall-down process and propose a mechanism whereby the Rosseland electric field (the field needed to maintain quasineutrality) may be responsible for the capture and confinement of large-gyroradius dust particles within a plasma shell stratified along the direction of the magnetic-field lines. For these particles, the effect of the magnetic force is rather weak, and they move with a constant z component of the angular momentum in a one-dimensional equivalent potential (gravitational plus centrifugal). This has a maximum at the equator and a minimum at the `2/3' points, i.e. the points where the field-aligned components of the gravitational and centrifugal forces balance. It is shown that under suitable initial conditions these are points of maximum dust density and minimum plasma density. The plasma-planetisemal transition is therefore expected to take place at the `2/3' points in accordance with the Alfven-Arrhenius mechanism. It is also shown that the fraction of infalling dust particles that can accrete onto the equatorial plane by the Alfven-Arrhenius and Rosseland mechanisms is rather small (~(L/ Re)≪1), L being the thickness of the plasma shell, and Re, a characteristic length scale of the field line

Published in:

Plasma Science, IEEE Transactions on  (Volume:17 ,  Issue: 2 )