Cart (Loading....) | Create Account
Close category search window
 

DynaTAPP: dynamic timing analysis with partial path activation in sequential circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Agrawal, P. ; AT&T Bell Lab., Murray Hill, NJ, USA ; Agrawal, V.D. ; Seth, S.C.

The authors provide a method of finding all sensitizable paths in a non-scan synchronous sequential circuit. Path activation conditions of the circuit are mapped onto a single stuck type fault by adding a few modeling gates to the netlist. The path is considered to be sensitizable only if the corresponding stuck type fault is found detectable by a sequential circuit test generator. A depth-first analysis of circuit topology that determines all paths between primary inputs, primary outputs and flip-flops employs a partial path hierarchy. All paths with a common unsensitizable segment need not be examined separately. Results on benchmark circuits show that: (1) the number of sensitizable paths can be significantly smaller than that found by a static timing analyzer, and (2) the partial path analysis adds to efficiency when the number of sensitizable paths is less than 20%

Published in:

Design Automation Conference, 1992., EURO-VHDL '92, EURO-DAC '92. European

Date of Conference:

7-10 Sep 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.