By Topic

Electrodynamics of solar wind-magnetosphere-ionosphere interactions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kan, J.R. ; Geophys. Inst., Alaska Univ., Fairbanks, AK, USA ; Akasofu, S.-I.

The authors present a coherent picture of fundamental physical processes in three basic elements of the SW-I (solar wind-magnetosphere-ionosphere) coupling system: (i) the field-aligned potential structure which leads to the formation of auroral arcs; (ii) the magnetosphere coupling which leads to the onset of magnetospheric substorms; and (iii) the solar wind-magnetosphere dynamo which supplies the power for driving various magnetospheric processes. The field-aligned potential structure on auroral lines is forced into existence by the loss-cone constriction effect when the upward field-aligned current density exceeds the loss-cone thermal flux limit. The substorm onset occurs when the ionosphere responds fully to the enhanced magnetospheric convection driven by the solar wind. The energy is transferred from the solar wind to the magnetosphere by a dynamo process primarily on open field lines

Published in:

Plasma Science, IEEE Transactions on  (Volume:17 ,  Issue: 2 )