Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Toward automatic robot instruction from perception-recognizing a grasp from observation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sing Bing Kang ; Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Ikeuchi, K.

Deals with the programming of robots to perform grasping tasks. To do this, the assembly plan from observation (APO) paradigm is adopted, where the key idea is to enable a system to observe a human performing a grasping task, understand it, and perform the task with minimal human intervention. A grasping task is composed of three phases: pregrasp phase, static grasp phase, and manipulation phase. The first step in recognizing a grasping task is identifying the grasp itself. The proposed strategy of identifying the grasp is to map the low-level hand configuration to increasingly more abstract grasp descriptions. To achieve the mapping, a grasp representation is introduced, called the contact web, which is composed of a pattern of effective contact points between the hand and the object. A grasp taxonomy based on the contact web is also proposed as a tool to systematically identify a grasp. The grasp can be described at higher conceptual levels using a certain mapping function that results in an index called the grasp cohesive index. This index can be used to identify the grasp. Results from grasping experiments show that it is possible to distinguish between various types of grasps using the proposed contact web, grasp taxonomy and grasp cohesive index

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:9 ,  Issue: 4 )