By Topic

The parallel approach to force/position control of robotic manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chiaverini, S. ; Dipartimento di Inf. e Sistemistica, Naples Univ., Italy ; Sciavicco, L.

Force/position control strategies provide an effective framework to deal with tasks involving interaction with the environment. In this paper the parallel approach to force/position control of robotic manipulators is presented. It shows a complete use of the available sensor measurements by operating the control action in a full-dimensional space without using selection matrices. Conflicting situations between the position and force tasks are managed using a priority strategy: the force control loop is designed to prevail over the position control loop. This choice ensures limited deviations from the prescribed force trajectory in every situation, guaranteeing automatic recovery from unplanned collisions. A dynamic force/position parallel control law is presented and its performance in presence of an elastic environment is analyzed; simplification of the dynamic control law is also discussed leading to a PID-type parallel controller. Two case studies are worked out that show the effectiveness of the approach in application to an industrial robot

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:9 ,  Issue: 4 )