By Topic

An approximate analysis of the performance of deflection routing in regular networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Choudhury, A. ; AT&T Bell Lab., Murray Hill, NJ, USA ; Li, V.O.K.

Regular two-dimensional architectures are being considered as alternatives to the linear topology metropolitan area networks (MANs) that are popular today. Deflection routing is an adaptive routing strategy that performs well on such architectures. A general analytic model has been developed to study the performance of buffered deflection routing in regular networks. The Manhattan street network, the ShuffleNet, and the shuffle exchange network have been studied as candidate two-connected networks with different topological characteristics. The results show that deflection routing performs well on both the Manhattan street network and the ShuffleNet, even under heavy loads, while on the shuffle exchange network it does not perform as well. The introduction of just a few buffers provides significant improvement in the delay-throughput performance over unbuffered deflection routing, especially in networks with large propagation delays. The analytic results are found to match the simulations very closely in most cases

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:11 ,  Issue: 8 )