By Topic

Hill-climbing heuristics for optimal hardware dimensioning and software allocation in fault-tolerant distributed systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. Distante ; Politecnico di Milano, Italy ; V. Piuri

An optimum distributed architecture with fault-tolerance capabilities for a given software application may be obtained by allowing allocation algorithms to evolve without any existing-hardware constraint. Distributed software partitioning and allocation is done using the simulated annealing optimization algorithm. To define the cost function used by the optimization algorithm, a model for interacting processes constituting the software application is presented. Tuning of algorithm parameters has been considered to assure convergence at a reasonable cost in terms of computation time

Published in:

IEEE Transactions on Reliability  (Volume:38 ,  Issue: 1 )