By Topic

Characterization of asymmetric coplanar waveguide discontinuities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dib, N.I. ; Radiation Lab., Michigan Univ., Ann Arbor, MI, USA ; Gupta, M. ; Ponchak, G.E. ; Katehi, L.P.B.

A general technique to characterize asymmetric coplanar waveguide (CPW) discontinuities with airbridges where both the fundamental coplanar and slotline modes may be excited together is presented. First, the CPW discontinuity without airbridges is analyzed using the space-domain integral equation (SDIE) approach. Second, the parameters (phase, amplitude, and wavelength) of the coplanar and slotline modes are extracted from an amplitude modulated-like standing wave existing in the CPW feeding lines. Then a 2n×2n generalized scattering matrix of the n-port discontinuity without airbridges is derived which includes the occurring mode conversion. Finally, this generalized scattering matrix is reduced to an n×n matrix by enforcing suitable conditions at the ports which correspond to the excited slotline mode. For the purpose of illustration, the method is applied to a shielded asymmetric short-end CPW shunt stub, the scattering parameters of which are compared with those of a symmetric one. Experiments are performed on both discontinuities and the results are in good agreement with theoretical data. The advantages of using airbridges in CPW circuits as opposed to bond wires are also discussed

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:41 ,  Issue: 9 )