By Topic

Modeling of neural systems by use of neuronal modes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marmarelis, V.Z. ; Dept. of Electr. & Biomed. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Orme, M.E.

A methodology for modeling spike-output neural systems from input-output data is proposed, which makes use of "neuronal modes" (NM) and "multi-input threshold" (MT) operators. The modeling concept of NMs was introduced in a previously published paper (V.Z. Marmarelis, ibid., vol.36, p.15-24, 1989) in order to provide concise and general mathematical representations of the nonlinear dynamics involved in signal transformation and coding by a class of neural systems. The authors present and demonstrate (with computer simulations) a method by which the NMs are determined using the 1stand 2nd-order kernel estimates of the system, obtained from input-output data. The MT operator (i.e., a binary operator with multiple real-valued operands which are the outputs of the NMs) possesses an intrinsic refractory mechanism and generates the sequence of output spikes. The spike-generating characteristics of the MT operator are determined by the "trigger regions" defined on the basis of data. This approach is offered as a reasonable compromise between modeling complexity and prediction accuracy, which may provide a common methodological framework for modeling a certain class of neural systems.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:40 ,  Issue: 11 )