By Topic

Multiresolution wavelet analysis of evoked potentials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Thakor, N.V. ; Dept. of Biomed. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Guo Xin-rong ; Sun Yi-Chun ; Hanley, D.F.

Neurological injury, such as from cerebral hypoxia, appears to cause complex changes in the shape of evoked potential (EP) signals. To characterize such changes we analyze EP signals with the aid of scaling functions called wavelets. In particular, we consider multiresolution wavelets that are a family of orthonormal functions. In the time domain, the multiresolution wavelets analyze EP signals at coarse or successively greater levels of temporal detail. In the frequency domain, the multiresolution wavelets resolve the EP signal into independent spectral bands. In an experimental demonstration of the method, somatosensory EP signals recorded during cerebral hypoxia in anesthetized cats are analyzed. Results obtained by multiresolution wavelet analysis are compared with conventional time-domain analysis and Fourier series expansions of the same signals. Multiresolution wavelet analysis appears to be a different, sensitive way to analyze EP signal features and to follow the EP signal trends in neurologic injury. Two characteristics appear to be of diagnostic value: the detail component of the MRW displays an early and a more rapid decline in response to hypoxic injury while the coarse component displays an earlier recovery upon reoxygenation.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:40 ,  Issue: 11 )