By Topic

High-performance devices for a 0.15- mu m CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Shahidi, G.G. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Warnock, J. ; Fischer, S. ; McFarland, P.A.
more authors

Devices have been designed and fabricated in a CMOS technology with a nominal channel length of 0.15 mu m and minimum channel length below 0.1 mu m. In order to minimize short-channel effects (SCEs) down to channel lengths below 0.1 mu m, highly nonuniform channel dopings (obtained by indium and antimony channel implants) and shallow source-drain extensions/halo (by In and Sb preamorphization and low-energy As and BF/sub 2/ implant were used. Maximum high V/sub DS/ threshold rolloff was 250 mV at effective channel length of 0.06 mu m. For the minimum channel length of 0.1 mu m, the loaded (FI=FO=3, C=240 fF) and unloaded delays were 150 and 25 ps, respectively.<>

Published in:

Electron Device Letters, IEEE  (Volume:14 ,  Issue: 10 )