By Topic

Isolated word recognition by neural network models with cross-correlation coefficients for speech dynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jianxiong Wu ; Dept. of Comput. Sci., Hong Kong Univ., Hong Kong ; Chorkin Chan

This paper presents an artificial neural network (ANN) for speaker-independent isolated word speech recognition. The network consists of three subnets in concatenation. The static information within one frame of speech signal is processed in the probabilistic mapping subnet that converts an input vector of acoustic features into a probability vector whose components are estimated probabilities of the feature vector belonging to the phonetic classes that constitute the words in the vocabulary. The dynamics capturing subnet computes the first-order cross correlation between the components of the probability vectors to serve as the discriminative feature derived from the interframe temporal information of the speech signal. These dynamic features are passed for decision-making to the classification subnet, which is a multilayer perceptron (MLP). The architecture of these three subnets are described, and the associated adaptive learning algorithms are derived. The recognition results for a subset of the DARPA TIMIT speech database are reported. The correct recognition rate of the proposed ANN system is 95.5%, whereas that of the best of continuous hidden Markov model (HMM)-based systems is only 91.0%

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:15 ,  Issue: 11 )