By Topic

Strategies for dynamic load balancing on highly parallel computers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. H. Willebeek-LeMair ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; A. P. Reeves

Dynamic load balancing strategies for minimizing the execution time of single applications running in parallel on multicomputer systems are discussed. Dynamic load balancing (DLB) is essential for the efficient use of highly parallel systems when solving non-uniform problems with unpredictable load estimates. With the evolution of more highly parallel systems, centralized DLB approaches which make use of a high degree of knowledge become less feasible due to the load balancing communication overhead. Five DLB strategies are presented which illustrate the tradeoff between 1) knowledge - the accuracy of each balancing decision, and 2) overhead - the amount of added processing and communication incurred by the balancing process. All five strategies have been implemented on an Inter iPSC/2 hypercube

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:4 ,  Issue: 9 )