Cart (Loading....) | Create Account
Close category search window

Proper complex random processes with applications to information theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Neeser, F.D. ; Signal & Inf. Process. Lab., ETH-Zentrum, Zurich, Switzerland ; Massey, J.L.

The covariance of complex random variables and processes, when defined consistently with the corresponding notion for real random variables, is shown to be determined by the usual complex covariance together with a quantity called the pseudo-covariance. A characterization of uncorrelatedness and wide-sense stationarity in terms of covariance and pseudo-covariance is given. Complex random variables and processes with a vanishing pseudo-covariance are called proper. It is shown that properness is preserved under affine transformations and that the complex-multivariate Gaussian density assumes a natural form only for proper random variables. The maximum-entropy theorem is generalized to the complex-multivariate case. The differential entropy of a complex random vector with a fixed correlation matrix is shown to be maximum if and only if the random vector is proper, Gaussian, and zero-mean. The notion of circular stationarity is introduced. For the class of proper complex random processes, a discrete Fourier transform correspondence is derived relating circular stationarity in the time domain to uncorrelatedness in the frequency domain. An application of the theory is presented

Published in:

Information Theory, IEEE Transactions on  (Volume:39 ,  Issue: 4 )

Date of Publication:

Jul 1993

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.