By Topic

Multilevel codes for unequal error protection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Calderbank, A.R. ; AT&T Bell Lab., Murray Hill, NJ, USA ; Seshadri, N.

Two combined unequal error protection (UEP) coding and modulation schemes are proposed. The first method multiplexes different coded signal constellations, with each coded constellation providing a different level of error protection. In this method, a codeword specifies the multiplexing rule and the choice of the codeword from a fixed codebook is used to convey additional important information. The decoder determines the multiplexing rule before decoding the rest of the data. The second method is based on partitioning a signal constellation into disjoint subsets in which the most important data sequence is encoded, using most of the available redundancy, to specify a sequence of subsets. The partitioning and code construction is done to maximize the minimum Euclidean distance between two different valid subset sequences. This leads to ways of partitioning the signal constellations into subsets. The less important data selects a sequence of signal points to be transmitted from the subsets. A side benefit of the proposed set partitioning procedure is a reduction in the number of nearest neighbors, sometimes even over the uncoded signal constellation

Published in:

Information Theory, IEEE Transactions on  (Volume:39 ,  Issue: 4 )