Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Multistage decoding of multilevel block M-PSK modulation codes and its performance analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Takata, T. ; Graduate Sch. of Inf. Sci., Adv. Inst. of Sci. & Technol., Nara, Japan ; Ujita, S. ; Kasami, T. ; Shu Lin

Multistage decoding of multilevel block multilevel phase-shift keying (M-PSK) modulation codes for the additive white Gaussian noise (AWGN) channel is investigated. Several types of multistage decoding, including a suboptimum soft-decision decoding scheme, are devised and analyzed. Upper bounds on the probability of an incorrect decoding of a code are derived for the proposed multistage decoding schemes. Error probabilities of some specific multilevel block 8-PSK modulation codes are evaluated and simulated. The computation and simulation results for these codes show that with multistage decoding, significant coding gains can be achieved with large reduction in decoding complexity. In one example, it is shown that the difference in performance between the proposed suboptimum multistage soft-decision decoding and the single-stage optimum decoding is small, only a fraction of a dB loss in SNR at the block error probability of 10-6

Published in:

Information Theory, IEEE Transactions on  (Volume:39 ,  Issue: 4 )