By Topic

Wavelet transforms associated with finite cyclic groups

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Caire, G. ; Dipartimento di Ingegneria Elettron., Politecnico di Torino, Italy ; Grossman, R.L. ; Poor, H.V.

Multiresolution analysis via decomposition on wavelet bases has emerged as an important tool in the analysis of signals and images when these objects are viewed as sequences of complex or real numbers. An important class of multiresolution decompositions are the Laplacian pyramid schemes, in which the resolution is successively halved by recursively low-pass filtering the signal under analysis and decimating it by a factor of two. In general, the principal framework within which multiresolution techniques have been studied and applied is the same as that used in the discrete-time Fourier analysis of sequences of complex numbers. An analogous framework is developed for the multiresolution analysis of finite-length sequences of elements from arbitrary fields. Attention is restricted to sequences of length 2n, for n a positive integer, so that the resolution may be recursively halved to completion. As in finite-length Fourier analysis, a cyclic group structure of the index set of such sequences is exploited to characterize the transforms of interest for the particular cases of complex and finite fields

Published in:

Information Theory, IEEE Transactions on  (Volume:39 ,  Issue: 4 )