By Topic

Vector quantization with complexity costs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Buhmann, J. ; Inst. fuer Inf. II, Rheinische Friedrich-Wilhelms-Univ., Bonn, Germany ; Kuhnel, H.

Vector quantization is a data compression method by which a set of data points is encoded by a reduced set of reference vectors: the codebook. A vector quantization strategy is discussed that jointly optimizes distortion errors and the codebook complexity, thereby determining the size of the codebook. A maximum entropy estimation of the cost function yields an optimal number of reference vectors, their positions, and their assignment probabilities. The dependence of the codebook density on the data density for different complexity functions is investigated in the limit of asymptotic quantization levels. How different complexity measures influence the efficiency of vector quantizers is studied for the task of image compression. The wavelet coefficients of gray-level images are quantized, and the reconstruction error is measured. The approach establishes a unifying framework for different quantization methods like K-means clustering and its fuzzy version, entropy constrained vector quantization or topological feature maps, and competitive neural networks

Published in:

Information Theory, IEEE Transactions on  (Volume:39 ,  Issue: 4 )