By Topic

Temperature distribution in tissues from a regular array of hot source implants: an analytical approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haider, S.A. ; Dept. of Radiat. & Oncology, Arizona Univ., Tuczon, AZ, USA ; Cetas, Thomas C. ; Roemer, R.B.

An approximate analytical model based on the bioheat transfer equation is derived and used to calculate temperature within a perfused region implanted regularly with dielectrically coated hot source implants. The effect of a regular array of mutually parallel heat sources of cylindrical shape is approximated by idealizing one of the boundary conditions. The solution is in terms of modified Bessel functions. In calculating the temperature of each thermoregulating source in the array, the steady state power balance is enforced. The important feature of the model is that the finite size of implant diameter and its dielectric coating can be incorporated. The effect of thickness and thermal conductivity of the coating on the source and tissue temperatures along with various other interesting features are deduced from this model. The analytically calculated implant and tissue temperatures are compared with those of a numerical 3-D finite difference model. The analytical model also is used to define a range of parameters such that minimal therapeutic temperatures will be achieved in the implanted volume without exceeding prescribed maximum temperatures.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:40 ,  Issue: 5 )