Cart (Loading....) | Create Account
Close category search window
 

Implementation of ultrasound time-domain cross-correlation blood velocity estimators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jensen, J.A. ; Electron. Inst., Tech. Univ. of Denmark, Lyngby, Denmark

The implementation of real-time blood velocity estimators using time-domain cross-correlation is investigated. The basic algorithm for stationary echo canceling, cross-correlation estimation and subsequent velocity estimation is presented. Sampled data acquired at rates of approximately 20 MHz are used in the algorithm, imposing a heavy burden on the signal processing hardware. The algorithm is analyzed with regard to the high sampling frequency, and a method for performing real-time high-speed-movement and cross-correlation is suggested. Implementation schemes based on using the sign of the data as well as the full precision are proposed. From an analysis of the process it is concluded that the sign data implementation can attain real-time processing. This can also be obtained for the full precision data, but at the expense of using a number of dedicated signal processing chips. Both implementations suggested can handle the estimation of velocities for A-lines acquired from multiple directions.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:40 ,  Issue: 5 )

Date of Publication:

May 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.