By Topic

Algorithms and bounds for shortest paths and diameter in faulty hypercubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tien, S.-B. ; Dept. of Electr. Eng., Southern Illinois Univ., Carbondale, IL, USA ; Raghavendra, C.S.

In an n-dimensional hypercube Qn, with the fault set |F|<2n-2, assuming S and D are not isolated, it is shown that there exists a path of length equal to at most their Hamming distance plus 4. An algorithm with complexity O (|F|logn) is given to find such a path. A bound for the diameter of the faulty hypercube Qn-F, when |F|<2n-2, as n+2 is obtained. This improves the previously known bound of n+6 obtained by A.-H. Esfahanian (1989). Worst case scenarios are constructed to show that these bounds for shortest paths and diameter are tight. It is also shown that when |F|<2n-2, the diameter bound is reduced to n+1 if every node has at least 2 nonfaulty neighbors and reduced to n if every node has at least 3 nonfaulty neighbors

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:4 ,  Issue: 6 )