By Topic

Analysis of nonlinear optical switching in an erbium-doped fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pantell, R.H. ; Edward L. Ginzton Lab., Stanford Univ., CA, USA ; Digonnet, M.J.F. ; Sadowski, R.W. ; Shaw, H.J.

A mathematical model of the strong, resonantly enhanced nonlinear phase shift recently reported in Er-doped fibers which relates the phase shift and signal loss to the fiber parameters and the pump and signal wavelengths, is presented. Predictions are in fair agreement with the phase shift and loss measured in an experimental Er-doped fiber switch based on this effect. A strong, nearly wavelength independent contribution to the nonlinear phase shift is observed in the switch. The model suggests that this effect is due to the same nonlinear effect arising from one or more vacuum ultraviolet (VUV) transitions in Er3+

Published in:

Lightwave Technology, Journal of  (Volume:11 ,  Issue: 9 )