By Topic

Engineering and analysis of fixed priority schedulers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Katcher, D.I. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Arakawa, H. ; Strosnider, J.K.

Scheduling theory holds great promise as a means to a priori validate timing correctness of real-time applications. However, there currently exists a wide gap between scheduling theory and its implementation in operating system kernels running on specific hardware platforms. The implementation of any particular scheduling algorithm introduces overhead and blocking components which must be accounted for in the timing correctness validation process. This paper presents a methodology for incorporating the costs of scheduler implementation within the context of fixed priority scheduling algorithms. Both event-driven and timer-driven scheduling implementations are analyzed. We show that for the timer-driven scheduling implementations the selection of the timer interrupt rate can dramatically affect the schedulability of a task set, and we present a method for determining the optimal timer rate. We analyzed both randomly generated and two well-defined task sets and found that their schedulability can be significantly degraded by the implementation costs. Task sets that have ideal breakdown utilization over 90% may not even be schedulable when the implementation costs are considered. This work provides a first step toward bridging the gap between real-time scheduling theory and implementation realities. This gap must be bridged for any meaningful validation of timing correctness properties of real-time applications

Published in:

Software Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 9 )