By Topic

An algorithm for the treatment of curved metallic laminas in the finite difference time domain method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Railton, C.J. ; Centre for Commun. Res., Bristol Univ., UK

The Finite Difference Time Domain (FDTD) method, implemented in Cartesian coordinates, is well proven as an efficient technique for the electromagnetic analysis of a wide variety of microwave structures. The standard FDTD method is, however, less efficient if the structure under investigation has boundaries which are not parallel to the coordinate axes. Techniques designed to overcome this problem such as locally or globally deformed grids, or the use of nonorthogonal coordinate systems have been reported but these impose a penalty in computational effort or in flexibility. In this contribution, an alternative technique is described whereby the standard Cartesian grid is maintained, and the existence of the material boundaries is accounted for by the use of special finite difference equations for the affected nodes. These equations take account not only of the position of the boundaries but also of the asymptotic field behavior in their vicinity. This technique results in a flexible, accurate, and efficient, implementation which is applicable to a wide range of MMIC and antenna structures

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:41 ,  Issue: 8 )