By Topic

Optimization of microstrip feed geometry for prime focus reflector antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kishk, A.A. ; Dept. of Electr. Eng., Mississippi Univ., MS, USA ; Shafai, L.

The radiation characteristics of a circular microstrip antenna are studied numerically. Surface integral equations are used to formulate the problem from the boundary conditions and moment methods are used to reduce the integral equations to a matrix equation. An analytic method is used to design a microstrip feed and to achieve symmetric radiation patterns with low cross polarization and backlobe levels. The backlobe level is reduced by adding a quarter-wavelength choke to the side wall or the ground plane of the antenna and the bandwidth is improved by stacking two layers. The performance of the feed with the reflector antenna is also considered. One of the feeds was fabricated and tested. Satisfactory agreement between the computed results and the measurement data was obtained. The microstrip feed has a very small size which should reduce its blockage of the reflector aperture

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:37 ,  Issue: 4 )